Crosstalk between jasmonic acid, ethylene and Nod factor signaling allows integration of diverse inputs for regulation of nodulation.

نویسندگان

  • Jongho Sun
  • Vinitha Cardoza
  • David M Mitchell
  • Lydia Bright
  • Giles Oldroyd
  • Jeanne M Harris
چکیده

Plant hormones interact at many different levels to form a network of signaling pathways connected by antagonistic and synergistic interactions. Ethylene and jasmonic acid both act to regulate the plant's responsiveness to a common set of biotic stimuli. In addition ethylene has been shown to negatively regulate the plant's response to the rhizobial bacterial signal, Nod factor. This regulation occurs at an early step in the Nod factor signal transduction pathway, at or above Nod factor-induced calcium spiking. Here we show that jasmonic acid also inhibits the plant's responses to rhizobial bacteria, with direct effects on Nod factor-induced calcium spiking. However, unlike ethylene, jasmonic acid not only inhibits spiking but also suppresses the frequency of calcium oscillations when applied at lower concentrations. This effect of jasmonic acid is amplified in the ethylene-insensitive mutant skl, indicating an antagonistic interaction between these two hormones for regulation of Nod factor signaling. The rapidity of the effects of ethylene and jasmonic acid on Nod factor signaling suggests direct crosstalk between these three signal transduction pathways. This work provides a model by which crosstalk between signaling pathways can rapidly integrate environmental, developmental and biotic stimuli to coordinate diverse plant responses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Abscisic acid coordinates nod factor and cytokinin signaling during the regulation of nodulation in Medicago truncatula.

Nodulation is tightly regulated in legumes to ensure appropriate levels of nitrogen fixation without excessive depletion of carbon reserves. This balance is maintained by intimately linking nodulation and its regulation with plant hormones. It has previously been shown that ethylene and jasmonic acid (JA) are able to regulate nodulation and Nod factor signal transduction. Here, we characterize ...

متن کامل

Deep Sequencing of the Medicago truncatula Root Transcriptome Reveals a Massive and Early Interaction between Nodulation Factor and Ethylene Signals.

The legume-rhizobium symbiosis is initiated through the activation of the Nodulation (Nod) factor-signaling cascade, leading to a rapid reprogramming of host cell developmental pathways. In this work, we combine transcriptome sequencing with molecular genetics and network analysis to quantify and categorize the transcriptional changes occurring in roots of Medicago truncatula from minutes to da...

متن کامل

Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks.

Plants have evolved a wide range of mechanisms to cope with biotic and abiotic stresses. To date, the molecular mechanisms that are involved in each stress has been revealed comparatively independently, and so our understanding of convergence points between biotic and abiotic stress signaling pathways remain rudimentary. However, recent studies have revealed several molecules, including transcr...

متن کامل

A positive regulatory role for LjERF1 in the nodulation process is revealed by systematic analysis of nodule-associated transcription factors of Lotus japonicus.

We have used reverse genetics to identify genes involved in legume-rhizobium symbiosis in Lotus japonicus. We obtained the sequences of 20 putative transcription factors from previously reported large-scale transcriptome data. The transcription factors were classified according to their DNA binding domains and patterns of expression during the nodulation process. We identified two homologues of...

متن کامل

Versatile roles of brassinosteroid in plants in the context of its homoeostasis, signaling and crosstalks

Brassinosteroids (BRs) are a class of steroidal plant hormones that play diverse roles in plant growth and developmental processes. Recently, the easy availability of biological resources, and development of new molecular tools and approaches have provided the required impetus for deeper understanding of the processes involved in BRs biosynthesis, transport, signaling and degradation pathways. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant journal : for cell and molecular biology

دوره 46 6  شماره 

صفحات  -

تاریخ انتشار 2006